Blanpied Lab

Research

Research in the Blanpied Lab examines protein organization at synapses. Our most important goal is discovery: we seek to understand mechanisms that control this organization to regulate synaptic transmission. 

The dendrites of neurons receive and integrate inputs from hundreds or thousands of partner cells, and most of this input arrives at highly specialized sites called synapses that are distributed over the dendritic tree. Improper regulation of synaptic transmission is implicated in an enormous variety of psychiatric disorders: an imbalance of glutamatergic neurotransmission in particular has been identified in the pathophysiology of diseases ranging from schizophrenia and autism to epilepsy and addiction, and excitatory synapses may be among the earliest targets of Alzheimer’s Disease (AD) pathogenesis. A key means of synaptic regulation is the control of the number of postsynaptic neurotransmitter receptors available for activation by glutamate release. Thus, understanding the protein trafficking mechanisms involved has broad implications not only for understanding the etiology of many diseases but more generally for defining the cellular basis of nervous system function and disorder.

1--EPSCs

We focus on processes that operate rapidly and very locally to regulate synaptic function on a moment-to-moment basis. These mechanisms are of particular interest because they likely underlie the initial stages of memory formation, and their perturbation produces severe and long-lasting damage to synaptic and neuronal morphology. Mechanisms we are studying currently include the organization and dynamics of proteins that control receptor number and position at the synapse, the continuous internalization and recycling of synaptic receptors, the postsynaptic actin cytoskeleton that controls postsynaptic morphology and regulates receptor trafficking in many ways, and the trans-synaptic molecular bridges that align presynaptic nerve terminals with postsynaptic specializations.STORM synapse rotation 3 downsampled

 

Understanding the complex set of molecular reactions that underlie endocytosis and other trafficking events requires examining these events in live cells. Thus, the lab has turned to high-resolution, high-speed, multi-color confocal and super-resolution imaging of proteins in cultured neurons. These approaches provide a way of examining the kinetics and spatial features of the molecular events at individual living synapses. We utilize a number of novel assays centered on single-molecule localization and tracking using PALM and STORM to examine protein positioning and movement at the synapse at the highest resolution possible and in living cells. These tools provide the perfect complement to whole-cell electrophysiological assays, which naturally track receptor function at high speed but typically with little or no spatial resolution. The lab aims to combine these approaches with molecular perturbation of protein function to provide unprecedented spatial, temporal, and molecular understanding of the protein trafficking events in spines.

Substack (1-239)

We are grateful to a number of sources for supporting our research. Our principle support is from the NIMH through R01 MH080046, as well as a longstanding collaboration with Sri Raghavachari at College Park. We also collaborate with Harry Higgs at Dartmouth and Tatyana Svitkina at Penn on a project funded by NIGMS, with Steve Meriney at Pitt and CMU (CRCNS/NINDS), and with Tom Abrams in the Department of Pharmacology (NIMH). The Dana Foundation and the Broad Foundation provided important support for the development of PALM in the lab, and its application toward understanding synaptic dysfunction in Alzheimer’s Disease. We also are grateful to the Katherine D. and Theodore J. Carski Foundation for their support of the Department and our lab. Our recent support from the Kahlert Foundation is particularly appreciated.